Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hashfn
Next ⟩
fseq1hash
Metamath Proof Explorer
Ascii
Unicode
Theorem
hashfn
Description:
A function is equinumerous to its domain.
(Contributed by
Mario Carneiro
, 12-Mar-2015)
Ref
Expression
Assertion
hashfn
⊢
F
Fn
A
→
F
=
A
Proof
Step
Hyp
Ref
Expression
1
fndmeng
⊢
F
Fn
A
∧
A
∈
V
→
A
≈
F
2
ensym
⊢
A
≈
F
→
F
≈
A
3
hasheni
⊢
F
≈
A
→
F
=
A
4
1
2
3
3syl
⊢
F
Fn
A
∧
A
∈
V
→
F
=
A
5
dmexg
⊢
F
∈
V
→
dom
⁡
F
∈
V
6
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
7
6
eleq1d
⊢
F
Fn
A
→
dom
⁡
F
∈
V
↔
A
∈
V
8
5
7
syl5ib
⊢
F
Fn
A
→
F
∈
V
→
A
∈
V
9
8
con3dimp
⊢
F
Fn
A
∧
¬
A
∈
V
→
¬
F
∈
V
10
fvprc
⊢
¬
F
∈
V
→
F
=
∅
11
9
10
syl
⊢
F
Fn
A
∧
¬
A
∈
V
→
F
=
∅
12
fvprc
⊢
¬
A
∈
V
→
A
=
∅
13
12
adantl
⊢
F
Fn
A
∧
¬
A
∈
V
→
A
=
∅
14
11
13
eqtr4d
⊢
F
Fn
A
∧
¬
A
∈
V
→
F
=
A
15
4
14
pm2.61dan
⊢
F
Fn
A
→
F
=
A