Metamath Proof Explorer


Theorem hashfz0

Description: Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018)

Ref Expression
Assertion hashfz0 B 0 0 B = B + 1

Proof

Step Hyp Ref Expression
1 elnn0uz B 0 B 0
2 hashfz B 0 0 B = B - 0 + 1
3 1 2 sylbi B 0 0 B = B - 0 + 1
4 nn0cn B 0 B
5 4 subid1d B 0 B 0 = B
6 5 oveq1d B 0 B - 0 + 1 = B + 1
7 3 6 eqtrd B 0 0 B = B + 1