Metamath Proof Explorer


Theorem hashfz1

Description: The set ( 1 ... N ) has N elements. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion hashfz1 N 0 1 N = N

Proof

Step Hyp Ref Expression
1 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
2 1 cardfz N 0 card 1 N = rec x V x + 1 0 ω -1 N
3 2 fveq2d N 0 rec x V x + 1 0 ω card 1 N = rec x V x + 1 0 ω rec x V x + 1 0 ω -1 N
4 fzfid N 0 1 N Fin
5 1 hashgval 1 N Fin rec x V x + 1 0 ω card 1 N = 1 N
6 4 5 syl N 0 rec x V x + 1 0 ω card 1 N = 1 N
7 1 hashgf1o rec x V x + 1 0 ω : ω 1-1 onto 0
8 f1ocnvfv2 rec x V x + 1 0 ω : ω 1-1 onto 0 N 0 rec x V x + 1 0 ω rec x V x + 1 0 ω -1 N = N
9 7 8 mpan N 0 rec x V x + 1 0 ω rec x V x + 1 0 ω -1 N = N
10 3 6 9 3eqtr3d N 0 1 N = N