Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|
2 |
|
eqeq2 |
|
3 |
|
nndivdvds |
|
4 |
3
|
biimpa |
|
5 |
|
dfphi2 |
|
6 |
4 5
|
syl |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
7 8 9
|
hashgcdlem |
|
11 |
10
|
3expa |
|
12 |
|
ovex |
|
13 |
12
|
rabex |
|
14 |
13
|
f1oen |
|
15 |
|
hasheni |
|
16 |
11 14 15
|
3syl |
|
17 |
6 16
|
eqtr2d |
|
18 |
|
simprr |
|
19 |
|
elfzoelz |
|
20 |
19
|
ad2antrl |
|
21 |
|
nnz |
|
22 |
21
|
ad2antrr |
|
23 |
|
gcddvds |
|
24 |
20 22 23
|
syl2anc |
|
25 |
24
|
simprd |
|
26 |
18 25
|
eqbrtrrd |
|
27 |
26
|
expr |
|
28 |
27
|
con3d |
|
29 |
28
|
impancom |
|
30 |
29
|
ralrimiv |
|
31 |
|
rabeq0 |
|
32 |
30 31
|
sylibr |
|
33 |
32
|
fveq2d |
|
34 |
|
hash0 |
|
35 |
33 34
|
eqtrdi |
|
36 |
1 2 17 35
|
ifbothda |
|