Step |
Hyp |
Ref |
Expression |
1 |
|
hashgcdlem.a |
|
2 |
|
hashgcdlem.b |
|
3 |
|
hashgcdlem.f |
|
4 |
|
oveq1 |
|
5 |
4
|
eqeq1d |
|
6 |
5 1
|
elrab2 |
|
7 |
|
elfzonn0 |
|
8 |
7
|
ad2antrl |
|
9 |
|
nnnn0 |
|
10 |
9
|
3ad2ant2 |
|
11 |
10
|
adantr |
|
12 |
8 11
|
nn0mulcld |
|
13 |
|
simpl1 |
|
14 |
|
elfzolt2 |
|
15 |
14
|
ad2antrl |
|
16 |
|
elfzoelz |
|
17 |
16
|
ad2antrl |
|
18 |
17
|
zred |
|
19 |
|
nnre |
|
20 |
19
|
3ad2ant1 |
|
21 |
20
|
adantr |
|
22 |
|
nnre |
|
23 |
|
nngt0 |
|
24 |
22 23
|
jca |
|
25 |
24
|
3ad2ant2 |
|
26 |
25
|
adantr |
|
27 |
|
ltmuldiv |
|
28 |
18 21 26 27
|
syl3anc |
|
29 |
15 28
|
mpbird |
|
30 |
|
elfzo0 |
|
31 |
12 13 29 30
|
syl3anbrc |
|
32 |
|
nncn |
|
33 |
32
|
3ad2ant1 |
|
34 |
|
nncn |
|
35 |
34
|
3ad2ant2 |
|
36 |
|
nnne0 |
|
37 |
36
|
3ad2ant2 |
|
38 |
33 35 37
|
divcan1d |
|
39 |
38
|
adantr |
|
40 |
39
|
eqcomd |
|
41 |
40
|
oveq2d |
|
42 |
|
nndivdvds |
|
43 |
42
|
biimp3a |
|
44 |
43
|
nnzd |
|
45 |
44
|
adantr |
|
46 |
|
mulgcdr |
|
47 |
17 45 11 46
|
syl3anc |
|
48 |
|
simprr |
|
49 |
48
|
oveq1d |
|
50 |
35
|
mulid2d |
|
51 |
50
|
adantr |
|
52 |
49 51
|
eqtrd |
|
53 |
41 47 52
|
3eqtrd |
|
54 |
|
oveq1 |
|
55 |
54
|
eqeq1d |
|
56 |
55 2
|
elrab2 |
|
57 |
31 53 56
|
sylanbrc |
|
58 |
6 57
|
sylan2b |
|
59 |
|
oveq1 |
|
60 |
59
|
eqeq1d |
|
61 |
60 2
|
elrab2 |
|
62 |
|
simprr |
|
63 |
|
elfzoelz |
|
64 |
63
|
ad2antrl |
|
65 |
|
simpl1 |
|
66 |
65
|
nnzd |
|
67 |
|
gcddvds |
|
68 |
64 66 67
|
syl2anc |
|
69 |
68
|
simpld |
|
70 |
62 69
|
eqbrtrrd |
|
71 |
|
nnz |
|
72 |
71
|
3ad2ant2 |
|
73 |
72
|
adantr |
|
74 |
37
|
adantr |
|
75 |
|
dvdsval2 |
|
76 |
73 74 64 75
|
syl3anc |
|
77 |
70 76
|
mpbid |
|
78 |
|
elfzofz |
|
79 |
78
|
ad2antrl |
|
80 |
|
elfznn0 |
|
81 |
|
nn0re |
|
82 |
|
nn0ge0 |
|
83 |
81 82
|
jca |
|
84 |
79 80 83
|
3syl |
|
85 |
25
|
adantr |
|
86 |
|
divge0 |
|
87 |
84 85 86
|
syl2anc |
|
88 |
|
elnn0z |
|
89 |
77 87 88
|
sylanbrc |
|
90 |
43
|
adantr |
|
91 |
|
elfzolt2 |
|
92 |
91
|
ad2antrl |
|
93 |
64
|
zred |
|
94 |
20
|
adantr |
|
95 |
|
ltdiv1 |
|
96 |
93 94 85 95
|
syl3anc |
|
97 |
92 96
|
mpbid |
|
98 |
|
elfzo0 |
|
99 |
89 90 97 98
|
syl3anbrc |
|
100 |
62
|
oveq1d |
|
101 |
|
simpl2 |
|
102 |
|
simpl3 |
|
103 |
|
gcddiv |
|
104 |
64 66 101 70 102 103
|
syl32anc |
|
105 |
35 37
|
dividd |
|
106 |
105
|
adantr |
|
107 |
100 104 106
|
3eqtr3d |
|
108 |
|
oveq1 |
|
109 |
108
|
eqeq1d |
|
110 |
109 1
|
elrab2 |
|
111 |
99 107 110
|
sylanbrc |
|
112 |
61 111
|
sylan2b |
|
113 |
6
|
simplbi |
|
114 |
61
|
simplbi |
|
115 |
113 114
|
anim12i |
|
116 |
63
|
ad2antll |
|
117 |
116
|
zcnd |
|
118 |
35
|
adantr |
|
119 |
37
|
adantr |
|
120 |
117 118 119
|
divcan1d |
|
121 |
120
|
eqcomd |
|
122 |
|
oveq1 |
|
123 |
122
|
eqeq2d |
|
124 |
121 123
|
syl5ibrcom |
|
125 |
16
|
ad2antrl |
|
126 |
125
|
zcnd |
|
127 |
126 118 119
|
divcan4d |
|
128 |
127
|
eqcomd |
|
129 |
|
oveq1 |
|
130 |
129
|
eqeq2d |
|
131 |
128 130
|
syl5ibrcom |
|
132 |
124 131
|
impbid |
|
133 |
115 132
|
sylan2 |
|
134 |
3 58 112 133
|
f1o2d |
|