Metamath Proof Explorer


Theorem hashge1

Description: The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion hashge1 A V A 1 A

Proof

Step Hyp Ref Expression
1 simpr A V A A Fin A Fin
2 simplr A V A A Fin A
3 hashnncl A Fin A A
4 3 biimpar A Fin A A
5 1 2 4 syl2anc A V A A Fin A
6 5 nnge1d A V A A Fin 1 A
7 1xr 1 *
8 pnfge 1 * 1 +∞
9 7 8 ax-mp 1 +∞
10 hashinf A V ¬ A Fin A = +∞
11 10 adantlr A V A ¬ A Fin A = +∞
12 9 11 breqtrrid A V A ¬ A Fin 1 A
13 6 12 pm2.61dan A V A 1 A