Metamath Proof Explorer


Theorem hashge2el2dif

Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019)

Ref Expression
Assertion hashge2el2dif D V 2 D x D y D x y

Proof

Step Hyp Ref Expression
1 fveq2 D = x D = x
2 hashsng x D x = 1
3 1 2 sylan9eqr x D D = x D = 1
4 3 ralimiaa x D D = x x D D = 1
5 0re 0
6 1re 1
7 5 6 readdcli 0 + 1
8 7 a1i D Fin D V 2 D 0 + 1
9 2re 2
10 9 a1i D Fin D V 2 D 2
11 hashcl D Fin D 0
12 11 nn0red D Fin D
13 12 adantr D Fin D V 2 D D
14 8 10 13 3jca D Fin D V 2 D 0 + 1 2 D
15 0p1e1 0 + 1 = 1
16 1lt2 1 < 2
17 15 16 eqbrtri 0 + 1 < 2
18 17 jctl 2 D 0 + 1 < 2 2 D
19 18 adantl D V 2 D 0 + 1 < 2 2 D
20 19 adantl D Fin D V 2 D 0 + 1 < 2 2 D
21 ltleletr 0 + 1 2 D 0 + 1 < 2 2 D 0 + 1 D
22 14 20 21 sylc D Fin D V 2 D 0 + 1 D
23 11 nn0zd D Fin D
24 0z 0
25 23 24 jctil D Fin 0 D
26 25 adantr D Fin D V 2 D 0 D
27 zltp1le 0 D 0 < D 0 + 1 D
28 26 27 syl D Fin D V 2 D 0 < D 0 + 1 D
29 22 28 mpbird D Fin D V 2 D 0 < D
30 0ltpnf 0 < +∞
31 simpl D V 2 D D V
32 31 anim2i ¬ D Fin D V 2 D ¬ D Fin D V
33 32 ancomd ¬ D Fin D V 2 D D V ¬ D Fin
34 hashinf D V ¬ D Fin D = +∞
35 33 34 syl ¬ D Fin D V 2 D D = +∞
36 30 35 breqtrrid ¬ D Fin D V 2 D 0 < D
37 29 36 pm2.61ian D V 2 D 0 < D
38 hashgt0n0 D V 0 < D D
39 37 38 syldan D V 2 D D
40 rspn0 D x D D = 1 D = 1
41 39 40 syl D V 2 D x D D = 1 D = 1
42 breq2 D = 1 2 D 2 1
43 6 9 ltnlei 1 < 2 ¬ 2 1
44 pm2.21 ¬ 2 1 2 1 ¬ x D D = x
45 43 44 sylbi 1 < 2 2 1 ¬ x D D = x
46 16 45 ax-mp 2 1 ¬ x D D = x
47 42 46 syl6bi D = 1 2 D ¬ x D D = x
48 47 com12 2 D D = 1 ¬ x D D = x
49 48 adantl D V 2 D D = 1 ¬ x D D = x
50 41 49 syldc x D D = 1 D V 2 D ¬ x D D = x
51 4 50 syl x D D = x D V 2 D ¬ x D D = x
52 ax-1 ¬ x D D = x D V 2 D ¬ x D D = x
53 51 52 pm2.61i D V 2 D ¬ x D D = x
54 eqsn D D = x y D y = x
55 39 54 syl D V 2 D D = x y D y = x
56 equcom y = x x = y
57 56 a1i D V 2 D y = x x = y
58 57 ralbidv D V 2 D y D y = x y D x = y
59 55 58 bitrd D V 2 D D = x y D x = y
60 59 ralbidv D V 2 D x D D = x x D y D x = y
61 53 60 mtbid D V 2 D ¬ x D y D x = y
62 df-ne x y ¬ x = y
63 62 rexbii y D x y y D ¬ x = y
64 rexnal y D ¬ x = y ¬ y D x = y
65 63 64 bitri y D x y ¬ y D x = y
66 65 rexbii x D y D x y x D ¬ y D x = y
67 rexnal x D ¬ y D x = y ¬ x D y D x = y
68 66 67 bitri x D y D x y ¬ x D y D x = y
69 61 68 sylibr D V 2 D x D y D x y