Metamath Proof Explorer


Theorem hashgf1o

Description: G maps _om one-to-one onto NN0 . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypothesis fzennn.1 G = rec x V x + 1 0 ω
Assertion hashgf1o G : ω 1-1 onto 0

Proof

Step Hyp Ref Expression
1 fzennn.1 G = rec x V x + 1 0 ω
2 0z 0
3 2 1 om2uzf1oi G : ω 1-1 onto 0
4 nn0uz 0 = 0
5 f1oeq3 0 = 0 G : ω 1-1 onto 0 G : ω 1-1 onto 0
6 4 5 ax-mp G : ω 1-1 onto 0 G : ω 1-1 onto 0
7 3 6 mpbir G : ω 1-1 onto 0