Metamath Proof Explorer


Theorem hashgt0

Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017)

Ref Expression
Assertion hashgt0 A V A 0 < A

Proof

Step Hyp Ref Expression
1 hashge0 A V 0 A
2 1 adantr A V A 0 A
3 hasheq0 A V A = 0 A =
4 3 necon3bid A V A 0 A
5 4 biimpar A V A A 0
6 2 5 jca A V A 0 A A 0
7 0xr 0 *
8 hashxrcl A V A *
9 xrltlen 0 * A * 0 < A 0 A A 0
10 7 8 9 sylancr A V 0 < A 0 A A 0
11 10 biimpar A V 0 A A 0 0 < A
12 6 11 syldan A V A 0 < A