Metamath Proof Explorer


Theorem hashgt0elex

Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018)

Ref Expression
Assertion hashgt0elex V W 0 < V x x V

Proof

Step Hyp Ref Expression
1 alnex x ¬ x V ¬ x x V
2 eq0 V = x ¬ x V
3 2 biimpri x ¬ x V V =
4 3 a1d x ¬ x V V W V =
5 1 4 sylbir ¬ x x V V W V =
6 5 impcom V W ¬ x x V V =
7 hashle00 V W V 0 V =
8 7 adantr V W ¬ x x V V 0 V =
9 6 8 mpbird V W ¬ x x V V 0
10 hashxrcl V W V *
11 0xr 0 *
12 xrlenlt V * 0 * V 0 ¬ 0 < V
13 10 11 12 sylancl V W V 0 ¬ 0 < V
14 13 bicomd V W ¬ 0 < V V 0
15 14 adantr V W ¬ x x V ¬ 0 < V V 0
16 9 15 mpbird V W ¬ x x V ¬ 0 < V
17 16 ex V W ¬ x x V ¬ 0 < V
18 17 con4d V W 0 < V x x V
19 18 imp V W 0 < V x x V