Metamath Proof Explorer


Theorem hashgt0elexb

Description: The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018)

Ref Expression
Assertion hashgt0elexb V W 0 < V x x V

Proof

Step Hyp Ref Expression
1 hashgt0elex V W 0 < V x x V
2 n0 V x x V
3 hashgt0 V W V 0 < V
4 2 3 sylan2br V W x x V 0 < V
5 1 4 impbida V W 0 < V x x V