Metamath Proof Explorer


Theorem hashgt12el

Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)

Ref Expression
Assertion hashgt12el V W 1 < V a V b V a b

Proof

Step Hyp Ref Expression
1 hash0 = 0
2 fveq2 = V = V
3 1 2 eqtr3id = V 0 = V
4 breq2 V = 0 1 < V 1 < 0
5 4 biimpd V = 0 1 < V 1 < 0
6 5 eqcoms 0 = V 1 < V 1 < 0
7 0le1 0 1
8 0re 0
9 1re 1
10 8 9 lenlti 0 1 ¬ 1 < 0
11 pm2.21 ¬ 1 < 0 1 < 0 a V b V a b
12 10 11 sylbi 0 1 1 < 0 a V b V a b
13 7 12 ax-mp 1 < 0 a V b V a b
14 6 13 syl6com 1 < V 0 = V a V b V a b
15 14 adantl V W 1 < V 0 = V a V b V a b
16 15 com12 0 = V V W 1 < V a V b V a b
17 3 16 syl = V V W 1 < V a V b V a b
18 df-ne V ¬ = V
19 necom V V
20 18 19 bitr3i ¬ = V V
21 ralnex a V ¬ b V a b ¬ a V b V a b
22 ralnex b V ¬ a b ¬ b V a b
23 nne ¬ a b a = b
24 equcom a = b b = a
25 23 24 bitri ¬ a b b = a
26 25 ralbii b V ¬ a b b V b = a
27 22 26 bitr3i ¬ b V a b b V b = a
28 27 ralbii a V ¬ b V a b a V b V b = a
29 21 28 bitr3i ¬ a V b V a b a V b V b = a
30 eqsn V V = a b V b = a
31 30 adantl V W V V = a b V b = a
32 31 bicomd V W V b V b = a V = a
33 32 ralbidv V W V a V b V b = a a V V = a
34 fveq2 V = a V = a
35 hashsnle1 a 1
36 34 35 eqbrtrdi V = a V 1
37 36 a1i V W a V V = a V 1
38 37 reximdva0 V W V a V V = a V 1
39 r19.36v a V V = a V 1 a V V = a V 1
40 38 39 syl V W V a V V = a V 1
41 33 40 sylbid V W V a V b V b = a V 1
42 hashxrcl V W V *
43 42 adantr V W V V *
44 1xr 1 *
45 xrlenlt V * 1 * V 1 ¬ 1 < V
46 43 44 45 sylancl V W V V 1 ¬ 1 < V
47 41 46 sylibd V W V a V b V b = a ¬ 1 < V
48 29 47 syl5bi V W V ¬ a V b V a b ¬ 1 < V
49 48 con4d V W V 1 < V a V b V a b
50 49 impancom V W 1 < V V a V b V a b
51 50 com12 V V W 1 < V a V b V a b
52 20 51 sylbi ¬ = V V W 1 < V a V b V a b
53 17 52 pm2.61i V W 1 < V a V b V a b