Metamath Proof Explorer


Theorem hashgt12el2

Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)

Ref Expression
Assertion hashgt12el2 V W 1 < V A V b V A b

Proof

Step Hyp Ref Expression
1 hash0 = 0
2 fveq2 = V = V
3 1 2 eqtr3id = V 0 = V
4 breq2 V = 0 1 < V 1 < 0
5 4 biimpd V = 0 1 < V 1 < 0
6 5 eqcoms 0 = V 1 < V 1 < 0
7 0le1 0 1
8 0re 0
9 1re 1
10 8 9 lenlti 0 1 ¬ 1 < 0
11 pm2.21 ¬ 1 < 0 1 < 0 b V A b
12 10 11 sylbi 0 1 1 < 0 b V A b
13 7 12 ax-mp 1 < 0 b V A b
14 6 13 syl6com 1 < V 0 = V b V A b
15 14 3ad2ant2 V W 1 < V A V 0 = V b V A b
16 3 15 syl5com = V V W 1 < V A V b V A b
17 df-ne V ¬ = V
18 necom V V
19 17 18 bitr3i ¬ = V V
20 ralnex b V ¬ A b ¬ b V A b
21 nne ¬ A b A = b
22 eqcom A = b b = A
23 21 22 bitri ¬ A b b = A
24 23 ralbii b V ¬ A b b V b = A
25 20 24 bitr3i ¬ b V A b b V b = A
26 eqsn V V = A b V b = A
27 26 bicomd V b V b = A V = A
28 27 adantl V W V b V b = A V = A
29 28 adantr V W V A V b V b = A V = A
30 hashsnle1 A 1
31 fveq2 V = A V = A
32 31 breq1d V = A V 1 A 1
33 32 adantl V W V A V V = A V 1 A 1
34 30 33 mpbiri V W V A V V = A V 1
35 34 ex V W V A V V = A V 1
36 29 35 sylbid V W V A V b V b = A V 1
37 hashxrcl V W V *
38 37 adantr V W V V *
39 38 adantr V W V A V V *
40 1xr 1 *
41 xrlenlt V * 1 * V 1 ¬ 1 < V
42 39 40 41 sylancl V W V A V V 1 ¬ 1 < V
43 36 42 sylibd V W V A V b V b = A ¬ 1 < V
44 25 43 syl5bi V W V A V ¬ b V A b ¬ 1 < V
45 44 con4d V W V A V 1 < V b V A b
46 45 exp31 V W V A V 1 < V b V A b
47 46 com24 V W 1 < V A V V b V A b
48 47 3imp V W 1 < V A V V b V A b
49 48 com12 V V W 1 < V A V b V A b
50 19 49 sylbi ¬ = V V W 1 < V A V b V A b
51 16 50 pm2.61i V W 1 < V A V b V A b