Metamath Proof Explorer


Theorem hashgt23el

Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023)

Ref Expression
Assertion hashgt23el V W 2 < V a V b V c V a b a c b c

Proof

Step Hyp Ref Expression
1 2pos 0 < 2
2 0xr 0 *
3 2re 2
4 3 rexri 2 *
5 hashxrcl V W V *
6 xrlttr 0 * 2 * V * 0 < 2 2 < V 0 < V
7 2 4 5 6 mp3an12i V W 0 < 2 2 < V 0 < V
8 1 7 mpani V W 2 < V 0 < V
9 hashgt0elex V W 0 < V a a V
10 9 ex V W 0 < V a a V
11 8 10 syld V W 2 < V a a V
12 11 imp V W 2 < V a a V
13 difexg V W V a V
14 difsnid a V V a a = V
15 14 fveq2d a V V a a = V
16 15 breq2d a V 2 < V a a 2 < V
17 16 adantr a V V W 2 < V a a 2 < V
18 df-2 2 = 1 + 1
19 18 breq1i 2 < V a a 1 + 1 < V a a
20 neldifsn ¬ a V a
21 1nn0 1 0
22 hashunsnggt V a V a V 1 0 ¬ a V a 1 < V a 1 + 1 < V a a
23 21 22 mp3anl3 V a V a V ¬ a V a 1 < V a 1 + 1 < V a a
24 13 23 sylanl1 V W a V ¬ a V a 1 < V a 1 + 1 < V a a
25 20 24 mpan2 V W a V 1 < V a 1 + 1 < V a a
26 25 biimp3ar V W a V 1 + 1 < V a a 1 < V a
27 19 26 syl3an3b V W a V 2 < V a a 1 < V a
28 27 3expia V W a V 2 < V a a 1 < V a
29 28 ancoms a V V W 2 < V a a 1 < V a
30 17 29 sylbird a V V W 2 < V 1 < V a
31 30 3impia a V V W 2 < V 1 < V a
32 31 3expib a V V W 2 < V 1 < V a
33 1lt2 1 < 2
34 1xr 1 *
35 xrlttr 1 * 2 * V * 1 < 2 2 < V 1 < V
36 34 4 5 35 mp3an12i V W 1 < 2 2 < V 1 < V
37 33 36 mpani V W 2 < V 1 < V
38 37 imp V W 2 < V 1 < V
39 38 3adant1 ¬ a V V W 2 < V 1 < V
40 difsn ¬ a V V a = V
41 40 3ad2ant1 ¬ a V V W 2 < V V a = V
42 41 fveq2d ¬ a V V W 2 < V V a = V
43 39 42 breqtrrd ¬ a V V W 2 < V 1 < V a
44 43 3expib ¬ a V V W 2 < V 1 < V a
45 32 44 pm2.61i V W 2 < V 1 < V a
46 hashgt12el V a V 1 < V a b V a c V a b c
47 13 45 46 syl2an2r V W 2 < V b V a c V a b c
48 47 alrimiv V W 2 < V a b V a c V a b c
49 19.29r a a V a b V a c V a b c a a V b V a c V a b c
50 12 48 49 syl2anc V W 2 < V a a V b V a c V a b c
51 df-rex a V b V a c V a b c a a V b V a c V a b c
52 eldifsn b V a b V b a
53 necom b a a b
54 53 anbi2i b V b a b V a b
55 52 54 bitri b V a b V a b
56 ax-5 a b c a b
57 56 anim2i b V a b b V c a b
58 55 57 sylbi b V a b V c a b
59 3anass c V a c b c c V a c b c
60 59 exbii c c V a c b c c c V a c b c
61 df-rex c V a b c c c V a b c
62 eldifsn c V a c V c a
63 necom c a a c
64 63 anbi2i c V c a c V a c
65 62 64 bitri c V a c V a c
66 65 anbi1i c V a b c c V a c b c
67 df-3an c V a c b c c V a c b c
68 66 67 bitr4i c V a b c c V a c b c
69 68 exbii c c V a b c c c V a c b c
70 61 69 bitri c V a b c c c V a c b c
71 df-rex c V a c b c c c V a c b c
72 60 70 71 3bitr4i c V a b c c V a c b c
73 72 biimpi c V a b c c V a c b c
74 58 73 anim12i b V a c V a b c b V c a b c V a c b c
75 alral c a b c V a b
76 75 anim1i c a b c V a c b c c V a b c V a c b c
77 r19.29 c V a b c V a c b c c V a b a c b c
78 3anass a b a c b c a b a c b c
79 78 biimpri a b a c b c a b a c b c
80 79 reximi c V a b a c b c c V a b a c b c
81 76 77 80 3syl c a b c V a c b c c V a b a c b c
82 81 anim2i b V c a b c V a c b c b V c V a b a c b c
83 82 anassrs b V c a b c V a c b c b V c V a b a c b c
84 74 83 syl b V a c V a b c b V c V a b a c b c
85 84 reximi2 b V a c V a b c b V c V a b a c b c
86 85 reximi a V b V a c V a b c a V b V c V a b a c b c
87 51 86 sylbir a a V b V a c V a b c a V b V c V a b a c b c
88 50 87 syl V W 2 < V a V b V c V a b a c b c