Metamath Proof Explorer


Theorem hashgval2

Description: A short expression for the G function of hashgf1o . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Assertion hashgval2 . ω = rec x V x + 1 0 ω

Proof

Step Hyp Ref Expression
1 hashresfn . ω Fn ω
2 frfnom rec x V x + 1 0 ω Fn ω
3 eqfnfv . ω Fn ω rec x V x + 1 0 ω Fn ω . ω = rec x V x + 1 0 ω y ω . ω y = rec x V x + 1 0 ω y
4 1 2 3 mp2an . ω = rec x V x + 1 0 ω y ω . ω y = rec x V x + 1 0 ω y
5 fvres y ω . ω y = y
6 nnfi y ω y Fin
7 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
8 7 hashgval y Fin rec x V x + 1 0 ω card y = y
9 6 8 syl y ω rec x V x + 1 0 ω card y = y
10 cardnn y ω card y = y
11 10 fveq2d y ω rec x V x + 1 0 ω card y = rec x V x + 1 0 ω y
12 5 9 11 3eqtr2d y ω . ω y = rec x V x + 1 0 ω y
13 4 12 mprgbir . ω = rec x V x + 1 0 ω