Metamath Proof Explorer


Theorem hashimarn

Description: The size of the image of a one-to-one function E under the range of a function F which is a one-to-one function into the domain of E equals the size of the function F . (Contributed by Alexander van der Vekens, 4-Feb-2018) (Proof shortened by AV, 4-May-2021)

Ref Expression
Assertion hashimarn E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = F

Proof

Step Hyp Ref Expression
1 f1f F : 0 ..^ F 1-1 dom E F : 0 ..^ F dom E
2 1 frnd F : 0 ..^ F 1-1 dom E ran F dom E
3 2 adantl E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E ran F dom E
4 ssdmres ran F dom E dom E ran F = ran F
5 3 4 sylib E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E dom E ran F = ran F
6 5 fveq2d E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E dom E ran F = ran F
7 df-ima E ran F = ran E ran F
8 7 fveq2i E ran F = ran E ran F
9 f1fun E : dom E 1-1 ran E Fun E
10 funres Fun E Fun E ran F
11 10 funfnd Fun E E ran F Fn dom E ran F
12 9 11 syl E : dom E 1-1 ran E E ran F Fn dom E ran F
13 12 ad2antrr E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F Fn dom E ran F
14 hashfn E ran F Fn dom E ran F E ran F = dom E ran F
15 13 14 syl E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = dom E ran F
16 ovex 0 ..^ F V
17 fex F : 0 ..^ F dom E 0 ..^ F V F V
18 1 16 17 sylancl F : 0 ..^ F 1-1 dom E F V
19 rnexg F V ran F V
20 18 19 syl F : 0 ..^ F 1-1 dom E ran F V
21 simpll E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E
22 f1ssres E : dom E 1-1 ran E ran F dom E E ran F : ran F 1-1 ran E
23 21 3 22 syl2anc E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F : ran F 1-1 ran E
24 hashf1rn ran F V E ran F : ran F 1-1 ran E E ran F = ran E ran F
25 20 23 24 syl2an2 E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = ran E ran F
26 15 25 eqtr3d E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E dom E ran F = ran E ran F
27 8 26 eqtr4id E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = dom E ran F
28 hashf1rn 0 ..^ F V F : 0 ..^ F 1-1 dom E F = ran F
29 16 28 mpan F : 0 ..^ F 1-1 dom E F = ran F
30 29 adantl E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E F = ran F
31 6 27 30 3eqtr4d E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = F
32 31 ex E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = F