Metamath Proof Explorer


Theorem hashimarni

Description: If the size of the image of a one-to-one function E under the range of a function F which is a one-to-one function into the domain of E is a nonnegative integer, the size of the function F is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion hashimarni E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E P = E ran F P = N F = N

Proof

Step Hyp Ref Expression
1 fveqeq2 P = E ran F P = N E ran F = N
2 1 adantl F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V P = E ran F P = N E ran F = N
3 hashimarn E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E E ran F = F
4 3 impcom F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V E ran F = F
5 id E ran F = N E ran F = N
6 4 5 sylan9req F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V E ran F = N F = N
7 6 ex F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V E ran F = N F = N
8 7 adantr F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V P = E ran F E ran F = N F = N
9 2 8 sylbid F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V P = E ran F P = N F = N
10 9 exp31 F : 0 ..^ F 1-1 dom E E : dom E 1-1 ran E E V P = E ran F P = N F = N
11 10 com23 F : 0 ..^ F 1-1 dom E P = E ran F E : dom E 1-1 ran E E V P = N F = N
12 11 com34 F : 0 ..^ F 1-1 dom E P = E ran F P = N E : dom E 1-1 ran E E V F = N
13 12 3imp F : 0 ..^ F 1-1 dom E P = E ran F P = N E : dom E 1-1 ran E E V F = N
14 13 com12 E : dom E 1-1 ran E E V F : 0 ..^ F 1-1 dom E P = E ran F P = N F = N