Metamath Proof Explorer


Theorem hashiun

Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015) (Revised by Mario Carneiro, 10-Dec-2016)

Ref Expression
Hypotheses fsumiun.1 φ A Fin
fsumiun.2 φ x A B Fin
fsumiun.3 φ Disj x A B
Assertion hashiun φ x A B = x A B

Proof

Step Hyp Ref Expression
1 fsumiun.1 φ A Fin
2 fsumiun.2 φ x A B Fin
3 fsumiun.3 φ Disj x A B
4 1cnd φ x A k B 1
5 1 2 3 4 fsumiun φ k x A B 1 = x A k B 1
6 2 ralrimiva φ x A B Fin
7 iunfi A Fin x A B Fin x A B Fin
8 1 6 7 syl2anc φ x A B Fin
9 ax-1cn 1
10 fsumconst x A B Fin 1 k x A B 1 = x A B 1
11 8 9 10 sylancl φ k x A B 1 = x A B 1
12 hashcl x A B Fin x A B 0
13 nn0cn x A B 0 x A B
14 mulid1 x A B x A B 1 = x A B
15 8 12 13 14 4syl φ x A B 1 = x A B
16 11 15 eqtrd φ k x A B 1 = x A B
17 fsumconst B Fin 1 k B 1 = B 1
18 2 9 17 sylancl φ x A k B 1 = B 1
19 hashcl B Fin B 0
20 nn0cn B 0 B
21 mulid1 B B 1 = B
22 2 19 20 21 4syl φ x A B 1 = B
23 18 22 eqtrd φ x A k B 1 = B
24 23 sumeq2dv φ x A k B 1 = x A B
25 5 16 24 3eqtr3d φ x A B = x A B