| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumiun.1 |
|
| 2 |
|
fsumiun.2 |
|
| 3 |
|
fsumiun.3 |
|
| 4 |
|
1cnd |
|
| 5 |
1 2 3 4
|
fsumiun |
|
| 6 |
2
|
ralrimiva |
|
| 7 |
|
iunfi |
|
| 8 |
1 6 7
|
syl2anc |
|
| 9 |
|
ax-1cn |
|
| 10 |
|
fsumconst |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
|
hashcl |
|
| 13 |
|
nn0cn |
|
| 14 |
|
mulrid |
|
| 15 |
8 12 13 14
|
4syl |
|
| 16 |
11 15
|
eqtrd |
|
| 17 |
|
fsumconst |
|
| 18 |
2 9 17
|
sylancl |
|
| 19 |
|
hashcl |
|
| 20 |
|
nn0cn |
|
| 21 |
|
mulrid |
|
| 22 |
2 19 20 21
|
4syl |
|
| 23 |
18 22
|
eqtrd |
|
| 24 |
23
|
sumeq2dv |
|
| 25 |
5 16 24
|
3eqtr3d |
|