Metamath Proof Explorer


Theorem hashle00

Description: If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Proof shortened by AV, 24-Oct-2021)

Ref Expression
Assertion hashle00 V W V 0 V =

Proof

Step Hyp Ref Expression
1 hashge0 V W 0 V
2 1 biantrud V W V 0 V 0 0 V
3 hashxrcl V W V *
4 0xr 0 *
5 xrletri3 V * 0 * V = 0 V 0 0 V
6 3 4 5 sylancl V W V = 0 V 0 0 V
7 hasheq0 V W V = 0 V =
8 2 6 7 3bitr2d V W V 0 V =