Metamath Proof Explorer


Theorem hashle2prv

Description: A nonempty subset of a powerset of a class V has size less than or equal to two iff it is an unordered pair of elements of V . (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion hashle2prv P 𝒫 V P 2 a V b V P = a b

Proof

Step Hyp Ref Expression
1 eldifsn P 𝒫 V P 𝒫 V P
2 hashle2pr P 𝒫 V P P 2 a b P = a b
3 1 2 sylbi P 𝒫 V P 2 a b P = a b
4 eldifi P 𝒫 V P 𝒫 V
5 eleq1 P = a b P 𝒫 V a b 𝒫 V
6 prelpw a V b V a V b V a b 𝒫 V
7 6 biimprd a V b V a b 𝒫 V a V b V
8 7 el2v a b 𝒫 V a V b V
9 5 8 syl6bi P = a b P 𝒫 V a V b V
10 4 9 syl5com P 𝒫 V P = a b a V b V
11 10 pm4.71rd P 𝒫 V P = a b a V b V P = a b
12 11 2exbidv P 𝒫 V a b P = a b a b a V b V P = a b
13 r2ex a V b V P = a b a b a V b V P = a b
14 13 bicomi a b a V b V P = a b a V b V P = a b
15 14 a1i P 𝒫 V a b a V b V P = a b a V b V P = a b
16 3 12 15 3bitrd P 𝒫 V P 2 a V b V P = a b