Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
fveq2d |
|
3 |
|
fveq2 |
|
4 |
3
|
oveq2d |
|
5 |
2 4
|
eqeq12d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
7
|
fveq2d |
|
9 |
|
fveq2 |
|
10 |
9
|
oveq2d |
|
11 |
8 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
|
fveq2 |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
|
fveq2 |
|
22 |
21
|
oveq2d |
|
23 |
20 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
hashcl |
|
26 |
25
|
nn0cnd |
|
27 |
26
|
exp0d |
|
28 |
|
hash0 |
|
29 |
28
|
oveq2i |
|
30 |
29
|
a1i |
|
31 |
|
mapdm0 |
|
32 |
31
|
fveq2d |
|
33 |
|
0ex |
|
34 |
|
hashsng |
|
35 |
33 34
|
mp1i |
|
36 |
32 35
|
eqtrd |
|
37 |
27 30 36
|
3eqtr4rd |
|
38 |
|
oveq1 |
|
39 |
|
vex |
|
40 |
39
|
a1i |
|
41 |
|
snex |
|
42 |
41
|
a1i |
|
43 |
|
elex |
|
44 |
43
|
adantr |
|
45 |
|
simprr |
|
46 |
|
disjsn |
|
47 |
45 46
|
sylibr |
|
48 |
|
mapunen |
|
49 |
40 42 44 47 48
|
syl31anc |
|
50 |
|
simpl |
|
51 |
|
simprl |
|
52 |
|
snfi |
|
53 |
|
unfi |
|
54 |
51 52 53
|
sylancl |
|
55 |
|
mapfi |
|
56 |
50 54 55
|
syl2anc |
|
57 |
|
mapfi |
|
58 |
57
|
adantrr |
|
59 |
|
mapfi |
|
60 |
50 52 59
|
sylancl |
|
61 |
|
xpfi |
|
62 |
58 60 61
|
syl2anc |
|
63 |
|
hashen |
|
64 |
56 62 63
|
syl2anc |
|
65 |
49 64
|
mpbird |
|
66 |
|
hashxp |
|
67 |
58 60 66
|
syl2anc |
|
68 |
|
vex |
|
69 |
68
|
a1i |
|
70 |
50 69
|
mapsnend |
|
71 |
|
hashen |
|
72 |
60 50 71
|
syl2anc |
|
73 |
70 72
|
mpbird |
|
74 |
73
|
oveq2d |
|
75 |
65 67 74
|
3eqtrd |
|
76 |
|
hashunsng |
|
77 |
76
|
elv |
|
78 |
77
|
adantl |
|
79 |
78
|
oveq2d |
|
80 |
26
|
adantr |
|
81 |
|
hashcl |
|
82 |
81
|
ad2antrl |
|
83 |
80 82
|
expp1d |
|
84 |
79 83
|
eqtrd |
|
85 |
75 84
|
eqeq12d |
|
86 |
38 85
|
syl5ibr |
|
87 |
86
|
expcom |
|
88 |
87
|
a2d |
|
89 |
6 12 18 24 37 88
|
findcard2s |
|
90 |
89
|
impcom |
|