Metamath Proof Explorer


Theorem hashnbusgrnn0

Description: The number of neighbors of a vertex in a finite simple graph is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis hashnbusgrnn0.v V = Vtx G
Assertion hashnbusgrnn0 G FinUSGraph U V G NeighbVtx U 0

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v V = Vtx G
2 1 eleq2i U V U Vtx G
3 nbfiusgrfi G FinUSGraph U Vtx G G NeighbVtx U Fin
4 2 3 sylan2b G FinUSGraph U V G NeighbVtx U Fin
5 hashcl G NeighbVtx U Fin G NeighbVtx U 0
6 4 5 syl G FinUSGraph U V G NeighbVtx U 0