Metamath Proof Explorer


Theorem hashnemnf

Description: The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017)

Ref Expression
Assertion hashnemnf A V A −∞

Proof

Step Hyp Ref Expression
1 hashnn0pnf A V A 0 A = +∞
2 mnfnre −∞
3 df-nel −∞ ¬ −∞
4 nn0re −∞ 0 −∞
5 4 con3i ¬ −∞ ¬ −∞ 0
6 3 5 sylbi −∞ ¬ −∞ 0
7 2 6 ax-mp ¬ −∞ 0
8 eleq1 A = −∞ A 0 −∞ 0
9 7 8 mtbiri A = −∞ ¬ A 0
10 9 necon2ai A 0 A −∞
11 pnfnemnf +∞ −∞
12 neeq1 A = +∞ A −∞ +∞ −∞
13 11 12 mpbiri A = +∞ A −∞
14 10 13 jaoi A 0 A = +∞ A −∞
15 1 14 syl A V A −∞