Metamath Proof Explorer


Theorem hashnn0n0nn

Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018)

Ref Expression
Assertion hashnn0n0nn V W Y 0 V = Y N V Y

Proof

Step Hyp Ref Expression
1 ne0i N V V
2 hashge1 V W V 1 V
3 1 2 sylan2 V W N V 1 V
4 simpr 1 V V 0 V 0
5 0lt1 0 < 1
6 0re 0
7 1re 1
8 6 7 ltnlei 0 < 1 ¬ 1 0
9 5 8 mpbi ¬ 1 0
10 breq2 V = 0 1 V 1 0
11 9 10 mtbiri V = 0 ¬ 1 V
12 11 necon2ai 1 V V 0
13 12 adantr 1 V V 0 V 0
14 elnnne0 V V 0 V 0
15 4 13 14 sylanbrc 1 V V 0 V
16 15 ex 1 V V 0 V
17 3 16 syl V W N V V 0 V
18 17 impancom V W V 0 N V V
19 18 com12 N V V W V 0 V
20 eleq1 V = Y V 0 Y 0
21 20 anbi2d V = Y V W V 0 V W Y 0
22 eleq1 V = Y V Y
23 21 22 imbi12d V = Y V W V 0 V V W Y 0 Y
24 19 23 syl5ib V = Y N V V W Y 0 Y
25 24 imp V = Y N V V W Y 0 Y
26 25 impcom V W Y 0 V = Y N V Y