Metamath Proof Explorer


Theorem hashnncl

Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion hashnncl A Fin A A

Proof

Step Hyp Ref Expression
1 nnne0 A A 0
2 hashcl A Fin A 0
3 elnn0 A 0 A A = 0
4 2 3 sylib A Fin A A = 0
5 4 ord A Fin ¬ A A = 0
6 5 necon1ad A Fin A 0 A
7 1 6 impbid2 A Fin A A 0
8 hasheq0 A Fin A = 0 A =
9 8 necon3bid A Fin A 0 A
10 7 9 bitrd A Fin A A