Metamath Proof Explorer


Theorem hashnnn0genn0

Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017)

Ref Expression
Assertion hashnnn0genn0 M V M 0 N 0 N M

Proof

Step Hyp Ref Expression
1 df-nel M 0 ¬ M 0
2 pm2.21 ¬ M 0 M 0 N M
3 1 2 sylbi M 0 M 0 N M
4 3 3ad2ant2 M V M 0 N 0 M 0 N M
5 nn0re N 0 N
6 5 ltpnfd N 0 N < +∞
7 5 rexrd N 0 N *
8 pnfxr +∞ *
9 xrltle N * +∞ * N < +∞ N +∞
10 7 8 9 sylancl N 0 N < +∞ N +∞
11 6 10 mpd N 0 N +∞
12 breq2 M = +∞ N M N +∞
13 11 12 syl5ibrcom N 0 M = +∞ N M
14 13 3ad2ant3 M V M 0 N 0 M = +∞ N M
15 hashnn0pnf M V M 0 M = +∞
16 15 3ad2ant1 M V M 0 N 0 M 0 M = +∞
17 4 14 16 mpjaod M V M 0 N 0 N M