| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnzfzclim.m |
|
| 2 |
|
hashnzfzclim.j |
|
| 3 |
1
|
adantr |
|
| 4 |
2
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
3 4 5
|
hashnzfz |
|
| 7 |
6
|
oveq1d |
|
| 8 |
7
|
mpteq2dva |
|
| 9 |
|
nnuz |
|
| 10 |
|
1z |
|
| 11 |
10
|
a1i |
|
| 12 |
1
|
nncnd |
|
| 13 |
1
|
nnne0d |
|
| 14 |
12 13
|
reccld |
|
| 15 |
9
|
eqimss2i |
|
| 16 |
|
nnex |
|
| 17 |
15 16
|
climconst2 |
|
| 18 |
14 10 17
|
sylancl |
|
| 19 |
16
|
mptex |
|
| 20 |
19
|
a1i |
|
| 21 |
|
ax-1cn |
|
| 22 |
|
divcnv |
|
| 23 |
21 22
|
mp1i |
|
| 24 |
|
ovex |
|
| 25 |
24
|
fvconst2 |
|
| 26 |
25
|
adantl |
|
| 27 |
14
|
adantr |
|
| 28 |
26 27
|
eqeltrd |
|
| 29 |
|
eqidd |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simpr |
|
| 33 |
|
ovexd |
|
| 34 |
29 31 32 33
|
fvmptd |
|
| 35 |
32
|
nnrecred |
|
| 36 |
34 35
|
eqeltrd |
|
| 37 |
36
|
recnd |
|
| 38 |
|
eqidd |
|
| 39 |
30
|
oveq2d |
|
| 40 |
39
|
adantl |
|
| 41 |
|
ovexd |
|
| 42 |
38 40 32 41
|
fvmptd |
|
| 43 |
26 34
|
oveq12d |
|
| 44 |
42 43
|
eqtr4d |
|
| 45 |
9 11 18 20 23 28 37 44
|
climsub |
|
| 46 |
14
|
subid1d |
|
| 47 |
45 46
|
breqtrd |
|
| 48 |
16
|
mptex |
|
| 49 |
48
|
a1i |
|
| 50 |
1
|
nnrecred |
|
| 51 |
50
|
adantr |
|
| 52 |
|
nnre |
|
| 53 |
52
|
adantl |
|
| 54 |
|
nnne0 |
|
| 55 |
54
|
adantl |
|
| 56 |
53 55
|
rereccld |
|
| 57 |
51 56
|
resubcld |
|
| 58 |
42 57
|
eqeltrd |
|
| 59 |
|
eqidd |
|
| 60 |
|
fvoveq1 |
|
| 61 |
|
id |
|
| 62 |
60 61
|
oveq12d |
|
| 63 |
62
|
adantl |
|
| 64 |
|
ovexd |
|
| 65 |
59 63 32 64
|
fvmptd |
|
| 66 |
1
|
adantr |
|
| 67 |
53 66
|
nndivred |
|
| 68 |
|
reflcl |
|
| 69 |
67 68
|
syl |
|
| 70 |
69 53 55
|
redivcld |
|
| 71 |
65 70
|
eqeltrd |
|
| 72 |
67
|
recnd |
|
| 73 |
|
1cnd |
|
| 74 |
|
nncn |
|
| 75 |
74
|
adantl |
|
| 76 |
72 73 75 55
|
divsubdird |
|
| 77 |
12
|
adantr |
|
| 78 |
13
|
adantr |
|
| 79 |
75 77 78
|
divrecd |
|
| 80 |
79
|
oveq1d |
|
| 81 |
27 75 55
|
divcan3d |
|
| 82 |
80 81
|
eqtrd |
|
| 83 |
82
|
oveq1d |
|
| 84 |
76 83
|
eqtrd |
|
| 85 |
|
1red |
|
| 86 |
67 85
|
resubcld |
|
| 87 |
|
nnrp |
|
| 88 |
87
|
adantl |
|
| 89 |
69 85
|
readdcld |
|
| 90 |
|
flle |
|
| 91 |
67 90
|
syl |
|
| 92 |
|
flflp1 |
|
| 93 |
67 67 92
|
syl2anc |
|
| 94 |
91 93
|
mpbid |
|
| 95 |
67 89 85 94
|
ltsub1dd |
|
| 96 |
69
|
recnd |
|
| 97 |
96 73
|
pncand |
|
| 98 |
95 97
|
breqtrd |
|
| 99 |
86 69 88 98
|
ltdiv1dd |
|
| 100 |
84 99
|
eqbrtrrd |
|
| 101 |
57 70 100
|
ltled |
|
| 102 |
|
simpr |
|
| 103 |
102
|
fvoveq1d |
|
| 104 |
103 102
|
oveq12d |
|
| 105 |
59 104 32 64
|
fvmptd |
|
| 106 |
101 42 105
|
3brtr4d |
|
| 107 |
69 67 88 91
|
lediv1dd |
|
| 108 |
107 82
|
breqtrd |
|
| 109 |
105 108
|
eqbrtrd |
|
| 110 |
9 11 47 49 58 71 106 109
|
climsqz |
|
| 111 |
16
|
mptex |
|
| 112 |
111
|
a1i |
|
| 113 |
2
|
zred |
|
| 114 |
|
1red |
|
| 115 |
113 114
|
resubcld |
|
| 116 |
115 1
|
nndivred |
|
| 117 |
116
|
flcld |
|
| 118 |
117
|
zcnd |
|
| 119 |
|
divcnv |
|
| 120 |
118 119
|
syl |
|
| 121 |
71
|
recnd |
|
| 122 |
|
eqidd |
|
| 123 |
|
oveq2 |
|
| 124 |
123
|
adantl |
|
| 125 |
|
ovexd |
|
| 126 |
122 124 32 125
|
fvmptd |
|
| 127 |
118
|
adantr |
|
| 128 |
127 75 55
|
divcld |
|
| 129 |
126 128
|
eqeltrd |
|
| 130 |
96 127 75 55
|
divsubdird |
|
| 131 |
|
eqidd |
|
| 132 |
60
|
oveq1d |
|
| 133 |
132 61
|
oveq12d |
|
| 134 |
133
|
adantl |
|
| 135 |
|
ovexd |
|
| 136 |
131 134 32 135
|
fvmptd |
|
| 137 |
65 126
|
oveq12d |
|
| 138 |
130 136 137
|
3eqtr4d |
|
| 139 |
9 11 110 112 120 121 129 138
|
climsub |
|
| 140 |
139 46
|
breqtrd |
|
| 141 |
|
uzssz |
|
| 142 |
|
resmpt |
|
| 143 |
141 142
|
ax-mp |
|
| 144 |
143
|
breq1i |
|
| 145 |
2 11
|
zsubcld |
|
| 146 |
|
zex |
|
| 147 |
146
|
mptex |
|
| 148 |
|
climres |
|
| 149 |
145 147 148
|
sylancl |
|
| 150 |
144 149
|
bitr3id |
|
| 151 |
9
|
reseq2i |
|
| 152 |
151
|
breq1i |
|
| 153 |
|
nnssz |
|
| 154 |
|
resmpt |
|
| 155 |
153 154
|
ax-mp |
|
| 156 |
155
|
breq1i |
|
| 157 |
|
climres |
|
| 158 |
10 147 157
|
mp2an |
|
| 159 |
152 156 158
|
3bitr3i |
|
| 160 |
150 159
|
bitr4di |
|
| 161 |
140 160
|
mpbird |
|
| 162 |
8 161
|
eqbrtrd |
|