Metamath Proof Explorer


Theorem hashp1i

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Hypotheses hashp1i.1 A ω
hashp1i.2 B = suc A
hashp1i.3 A = M
hashp1i.4 M + 1 = N
Assertion hashp1i B = N

Proof

Step Hyp Ref Expression
1 hashp1i.1 A ω
2 hashp1i.2 B = suc A
3 hashp1i.3 A = M
4 hashp1i.4 M + 1 = N
5 df-suc suc A = A A
6 2 5 eqtri B = A A
7 6 fveq2i B = A A
8 nnfi A ω A Fin
9 1 8 ax-mp A Fin
10 nnord A ω Ord A
11 ordirr Ord A ¬ A A
12 1 10 11 mp2b ¬ A A
13 hashunsng A ω A Fin ¬ A A A A = A + 1
14 1 13 ax-mp A Fin ¬ A A A A = A + 1
15 9 12 14 mp2an A A = A + 1
16 3 oveq1i A + 1 = M + 1
17 16 4 eqtri A + 1 = N
18 15 17 eqtri A A = N
19 7 18 eqtri B = N