Metamath Proof Explorer


Theorem hashprb

Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018)

Ref Expression
Assertion hashprb M V N V M N M N = 2

Proof

Step Hyp Ref Expression
1 hashprg M V N V M N M N = 2
2 1 biimp3a M V N V M N M N = 2
3 elprchashprn2 ¬ M V ¬ M N = 2
4 pm2.21 ¬ M N = 2 M N = 2 M V N V M N
5 3 4 syl ¬ M V M N = 2 M V N V M N
6 elprchashprn2 ¬ N V ¬ N M = 2
7 prcom N M = M N
8 7 fveq2i N M = M N
9 8 eqeq1i N M = 2 M N = 2
10 9 4 sylnbi ¬ N M = 2 M N = 2 M V N V M N
11 6 10 syl ¬ N V M N = 2 M V N V M N
12 simpll M V N V M N = 2 M V
13 simplr M V N V M N = 2 N V
14 1 biimpar M V N V M N = 2 M N
15 12 13 14 3jca M V N V M N = 2 M V N V M N
16 15 ex M V N V M N = 2 M V N V M N
17 5 11 16 ecase M N = 2 M V N V M N
18 2 17 impbii M V N V M N M N = 2