Metamath Proof Explorer


Theorem hashprdifel

Description: The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020)

Ref Expression
Hypothesis hashprdifel.s S = A B
Assertion hashprdifel S = 2 A S B S A B

Proof

Step Hyp Ref Expression
1 hashprdifel.s S = A B
2 1 fveq2i S = A B
3 2 eqeq1i S = 2 A B = 2
4 hashprb A V B V A B A B = 2
5 3 4 bitr4i S = 2 A V B V A B
6 prid1g A V A A B
7 6 3ad2ant1 A V B V A B A A B
8 7 1 eleqtrrdi A V B V A B A S
9 prid2g B V B A B
10 9 3ad2ant2 A V B V A B B A B
11 10 1 eleqtrrdi A V B V A B B S
12 simp3 A V B V A B A B
13 8 11 12 3jca A V B V A B A S B S A B
14 5 13 sylbi S = 2 A S B S A B