Metamath Proof Explorer


Theorem hashpw

Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012) (Proof shortened by Mario Carneiro, 5-Aug-2014)

Ref Expression
Assertion hashpw AFin𝒫A=2A

Proof

Step Hyp Ref Expression
1 pweq x=A𝒫x=𝒫A
2 1 fveq2d x=A𝒫x=𝒫A
3 fveq2 x=Ax=A
4 3 oveq2d x=A2x=2A
5 2 4 eqeq12d x=A𝒫x=2x𝒫A=2A
6 vex xV
7 6 pw2en 𝒫x2𝑜x
8 pwfi xFin𝒫xFin
9 8 biimpi xFin𝒫xFin
10 df2o2 2𝑜=
11 prfi Fin
12 10 11 eqeltri 2𝑜Fin
13 mapfi 2𝑜FinxFin2𝑜xFin
14 12 13 mpan xFin2𝑜xFin
15 hashen 𝒫xFin2𝑜xFin𝒫x=2𝑜x𝒫x2𝑜x
16 9 14 15 syl2anc xFin𝒫x=2𝑜x𝒫x2𝑜x
17 7 16 mpbiri xFin𝒫x=2𝑜x
18 hashmap 2𝑜FinxFin2𝑜x=2𝑜x
19 12 18 mpan xFin2𝑜x=2𝑜x
20 hash2 2𝑜=2
21 20 oveq1i 2𝑜x=2x
22 19 21 eqtrdi xFin2𝑜x=2x
23 17 22 eqtrd xFin𝒫x=2x
24 5 23 vtoclga AFin𝒫A=2A