Metamath Proof Explorer


Theorem hashpw

Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012) (Proof shortened by Mario Carneiro, 5-Aug-2014)

Ref Expression
Assertion hashpw A Fin 𝒫 A = 2 A

Proof

Step Hyp Ref Expression
1 pweq x = A 𝒫 x = 𝒫 A
2 1 fveq2d x = A 𝒫 x = 𝒫 A
3 fveq2 x = A x = A
4 3 oveq2d x = A 2 x = 2 A
5 2 4 eqeq12d x = A 𝒫 x = 2 x 𝒫 A = 2 A
6 vex x V
7 6 pw2en 𝒫 x 2 𝑜 x
8 pwfi x Fin 𝒫 x Fin
9 8 biimpi x Fin 𝒫 x Fin
10 df2o2 2 𝑜 =
11 prfi Fin
12 10 11 eqeltri 2 𝑜 Fin
13 mapfi 2 𝑜 Fin x Fin 2 𝑜 x Fin
14 12 13 mpan x Fin 2 𝑜 x Fin
15 hashen 𝒫 x Fin 2 𝑜 x Fin 𝒫 x = 2 𝑜 x 𝒫 x 2 𝑜 x
16 9 14 15 syl2anc x Fin 𝒫 x = 2 𝑜 x 𝒫 x 2 𝑜 x
17 7 16 mpbiri x Fin 𝒫 x = 2 𝑜 x
18 hashmap 2 𝑜 Fin x Fin 2 𝑜 x = 2 𝑜 x
19 12 18 mpan x Fin 2 𝑜 x = 2 𝑜 x
20 hash2 2 𝑜 = 2
21 20 oveq1i 2 𝑜 x = 2 x
22 19 21 eqtrdi x Fin 2 𝑜 x = 2 x
23 17 22 eqtrd x Fin 𝒫 x = 2 x
24 5 23 vtoclga A Fin 𝒫 A = 2 A