Metamath Proof Explorer


Theorem hashrabrsn

Description: The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017)

Ref Expression
Assertion hashrabrsn x A | φ 0

Proof

Step Hyp Ref Expression
1 eqid x A | φ = x A | φ
2 rabrsn x A | φ = x A | φ x A | φ = x A | φ = A
3 fveq2 x A | φ = x A | φ =
4 hash0 = 0
5 0nn0 0 0
6 4 5 eqeltri 0
7 3 6 eqeltrdi x A | φ = x A | φ 0
8 fveq2 x A | φ = A x A | φ = A
9 hashsng A V A = 1
10 1nn0 1 0
11 9 10 eqeltrdi A V A 0
12 snprc ¬ A V A =
13 fveq2 A = A =
14 13 6 eqeltrdi A = A 0
15 12 14 sylbi ¬ A V A 0
16 11 15 pm2.61i A 0
17 8 16 eqeltrdi x A | φ = A x A | φ 0
18 7 17 jaoi x A | φ = x A | φ = A x A | φ 0
19 1 2 18 mp2b x A | φ 0