Metamath Proof Explorer


Theorem hashrepr

Description: Develop the number of representations of an integer M as a sum of nonnegative integers in set A . (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses hashrepr.a φ A
hashrepr.m φ M 0
hashrepr.s φ S 0
Assertion hashrepr φ A repr S M = c repr S M a 0 ..^ S 𝟙 A c a

Proof

Step Hyp Ref Expression
1 hashrepr.a φ A
2 hashrepr.m φ M 0
3 hashrepr.s φ S 0
4 2 nn0zd φ M
5 fzfid φ 1 M Fin
6 fz1ssnn 1 M
7 6 a1i φ 1 M
8 1 4 3 5 7 hashreprin φ A 1 M repr S M = c 1 M repr S M a 0 ..^ S 𝟙 A c a
9 2 3 1 reprinfz1 φ A repr S M = A 1 M repr S M
10 9 fveq2d φ A repr S M = A 1 M repr S M
11 2 3 reprfz1 φ repr S M = 1 M repr S M
12 11 sumeq1d φ c repr S M a 0 ..^ S 𝟙 A c a = c 1 M repr S M a 0 ..^ S 𝟙 A c a
13 8 10 12 3eqtr4d φ A repr S M = c repr S M a 0 ..^ S 𝟙 A c a