Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|
2 |
|
reprval.m |
|
3 |
|
reprval.s |
|
4 |
|
hashreprin.b |
|
5 |
|
hashreprin.1 |
|
6 |
5 2 3 4
|
reprfi |
|
7 |
|
inss2 |
|
8 |
7
|
a1i |
|
9 |
5 2 3 8
|
reprss |
|
10 |
6 9
|
ssfid |
|
11 |
|
1cnd |
|
12 |
|
fsumconst |
|
13 |
10 11 12
|
syl2anc |
|
14 |
11
|
ralrimivw |
|
15 |
6
|
olcd |
|
16 |
|
sumss2 |
|
17 |
9 14 15 16
|
syl21anc |
|
18 |
5 2 3
|
reprinrn |
|
19 |
|
incom |
|
20 |
19
|
oveq1i |
|
21 |
20
|
eleq2i |
|
22 |
21
|
bibi1i |
|
23 |
22
|
imbi2i |
|
24 |
18 23
|
mpbi |
|
25 |
24
|
baibd |
|
26 |
25
|
ifbid |
|
27 |
|
nnex |
|
28 |
27
|
a1i |
|
29 |
28
|
ralrimivw |
|
30 |
29
|
r19.21bi |
|
31 |
|
fzofi |
|
32 |
31
|
a1i |
|
33 |
1
|
adantr |
|
34 |
5
|
adantr |
|
35 |
2
|
adantr |
|
36 |
3
|
adantr |
|
37 |
|
simpr |
|
38 |
34 35 36 37
|
reprf |
|
39 |
38 34
|
fssd |
|
40 |
30 32 33 39
|
prodindf |
|
41 |
26 40
|
eqtr4d |
|
42 |
41
|
sumeq2dv |
|
43 |
17 42
|
eqtrd |
|
44 |
|
hashcl |
|
45 |
10 44
|
syl |
|
46 |
45
|
nn0cnd |
|
47 |
46
|
mulid1d |
|
48 |
13 43 47
|
3eqtr3rd |
|