Metamath Proof Explorer


Theorem hashresfn

Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion hashresfn . A Fn A

Proof

Step Hyp Ref Expression
1 hashf . : V 0 +∞
2 ffn . : V 0 +∞ . Fn V
3 fnresin2 . Fn V . A V Fn A V
4 1 2 3 mp2b . A V Fn A V
5 inv1 A V = A
6 5 reseq2i . A V = . A
7 fneq12 . A V = . A A V = A . A V Fn A V . A Fn A
8 6 5 7 mp2an . A V Fn A V . A Fn A
9 4 8 mpbi . A Fn A