Metamath Proof Explorer


Theorem hashsdom

Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion hashsdom A Fin B Fin A < B A B

Proof

Step Hyp Ref Expression
1 hashcl A Fin A 0
2 hashcl B Fin B 0
3 nn0re A 0 A
4 nn0re B 0 B
5 ltlen A B A < B A B B A
6 3 4 5 syl2an A 0 B 0 A < B A B B A
7 1 2 6 syl2an A Fin B Fin A < B A B B A
8 hashdom A Fin B Fin A B A B
9 eqcom B = A A = B
10 hashen A Fin B Fin A = B A B
11 9 10 syl5bb A Fin B Fin B = A A B
12 11 necon3abid A Fin B Fin B A ¬ A B
13 8 12 anbi12d A Fin B Fin A B B A A B ¬ A B
14 7 13 bitrd A Fin B Fin A < B A B ¬ A B
15 brsdom A B A B ¬ A B
16 14 15 bitr4di A Fin B Fin A < B A B