Metamath Proof Explorer
		
		
		
		Description:  The size of a singleton is either 0 or 1.  (Contributed by AV, 23-Feb-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | hashsn01 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashsng |  | 
						
							| 2 | 1 | olcd |  | 
						
							| 3 |  | snprc |  | 
						
							| 4 | 3 | biimpi |  | 
						
							| 5 | 4 | fveq2d |  | 
						
							| 6 |  | hash0 |  | 
						
							| 7 | 5 6 | eqtrdi |  | 
						
							| 8 | 7 | orcd |  | 
						
							| 9 | 2 8 | pm2.61i |  |