Metamath Proof Explorer
Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
|
|
Ref |
Expression |
|
Assertion |
hashsn01 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hashsng |
|
2 |
1
|
olcd |
|
3 |
|
snprc |
|
4 |
3
|
biimpi |
|
5 |
4
|
fveq2d |
|
6 |
|
hash0 |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
orcd |
|
9 |
2 8
|
pm2.61i |
|