Metamath Proof Explorer


Theorem hashsng

Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 13-Feb-2013)

Ref Expression
Assertion hashsng A V A = 1

Proof

Step Hyp Ref Expression
1 1z 1
2 en2sn A V 1 A 1
3 1 2 mpan2 A V A 1
4 snfi A Fin
5 snfi 1 Fin
6 hashen A Fin 1 Fin A = 1 A 1
7 4 5 6 mp2an A = 1 A 1
8 3 7 sylibr A V A = 1
9 fzsn 1 1 1 = 1
10 9 fveq2d 1 1 1 = 1
11 1nn0 1 0
12 hashfz1 1 0 1 1 = 1
13 11 12 ax-mp 1 1 = 1
14 10 13 eqtr3di 1 1 = 1
15 1 14 ax-mp 1 = 1
16 8 15 eqtrdi A V A = 1