Metamath Proof Explorer


Theorem hashsnlei

Description: Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015) (Proof shortened by AV, 23-Feb-2021)

Ref Expression
Assertion hashsnlei A Fin A 1

Proof

Step Hyp Ref Expression
1 snfi A Fin
2 hashsnle1 A 1
3 1 2 pm3.2i A Fin A 1