Metamath Proof Explorer


Theorem hashss

Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018)

Ref Expression
Assertion hashss A V B A B A

Proof

Step Hyp Ref Expression
1 ssdomg A Fin B A B A
2 1 com12 B A A Fin B A
3 2 adantl A V B A A Fin B A
4 3 impcom A Fin A V B A B A
5 ssfi A Fin B A B Fin
6 5 adantrl A Fin A V B A B Fin
7 simpl A Fin A V B A A Fin
8 hashdom B Fin A Fin B A B A
9 6 7 8 syl2anc A Fin A V B A B A B A
10 4 9 mpbird A Fin A V B A B A
11 10 ex A Fin A V B A B A
12 hashinf A V ¬ A Fin A = +∞
13 ssexg B A A V B V
14 13 ancoms A V B A B V
15 hashxrcl B V B *
16 pnfge B * B +∞
17 14 15 16 3syl A V B A B +∞
18 17 ex A V B A B +∞
19 18 adantl A = +∞ A V B A B +∞
20 breq2 A = +∞ B A B +∞
21 20 adantr A = +∞ A V B A B +∞
22 19 21 sylibrd A = +∞ A V B A B A
23 22 expcom A V A = +∞ B A B A
24 23 adantr A V ¬ A Fin A = +∞ B A B A
25 12 24 mpd A V ¬ A Fin B A B A
26 25 impancom A V B A ¬ A Fin B A
27 26 com12 ¬ A Fin A V B A B A
28 11 27 pm2.61i A V B A B A