Metamath Proof Explorer


Theorem hashsslei

Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses hashsslei.b B A
hashsslei.a A Fin A N
hashsslei.n N 0
Assertion hashsslei B Fin B N

Proof

Step Hyp Ref Expression
1 hashsslei.b B A
2 hashsslei.a A Fin A N
3 hashsslei.n N 0
4 2 simpli A Fin
5 ssfi A Fin B A B Fin
6 4 1 5 mp2an B Fin
7 ssdomg A Fin B A B A
8 4 1 7 mp2 B A
9 hashdom B Fin A Fin B A B A
10 6 4 9 mp2an B A B A
11 8 10 mpbir B A
12 2 simpri A N
13 hashcl B Fin B 0
14 6 13 ax-mp B 0
15 14 nn0rei B
16 hashcl A Fin A 0
17 4 16 ax-mp A 0
18 17 nn0rei A
19 3 nn0rei N
20 15 18 19 letri B A A N B N
21 11 12 20 mp2an B N
22 6 21 pm3.2i B Fin B N