Metamath Proof Explorer


Theorem hashtplei

Description: An unordered triple has at most three elements. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion hashtplei A B C Fin A B C 3

Proof

Step Hyp Ref Expression
1 df-tp A B C = A B C
2 hashprlei A B Fin A B 2
3 hashsnlei C Fin C 1
4 2nn0 2 0
5 1nn0 1 0
6 2p1e3 2 + 1 = 3
7 1 2 3 4 5 6 hashunlei A B C Fin A B C 3