Metamath Proof Explorer


Theorem hashuni

Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypotheses hashuni.1 φ A Fin
hashuni.2 φ A Fin
hashuni.3 φ Disj x A x
Assertion hashuni φ A = x A x

Proof

Step Hyp Ref Expression
1 hashuni.1 φ A Fin
2 hashuni.2 φ A Fin
3 hashuni.3 φ Disj x A x
4 uniiun A = x A x
5 4 fveq2i A = x A x
6 2 sselda φ x A x Fin
7 1 6 3 hashiun φ x A x = x A x
8 5 7 eqtrid φ A = x A x