Metamath Proof Explorer


Theorem hashunsng

Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion hashunsng B V A Fin ¬ B A A B = A + 1

Proof

Step Hyp Ref Expression
1 disjsn A B = ¬ B A
2 snfi B Fin
3 hashun A Fin B Fin A B = A B = A + B
4 2 3 mp3an2 A Fin A B = A B = A + B
5 1 4 sylan2br A Fin ¬ B A A B = A + B
6 hashsng B V B = 1
7 6 oveq2d B V A + B = A + 1
8 5 7 sylan9eq A Fin ¬ B A B V A B = A + 1
9 8 expcom B V A Fin ¬ B A A B = A + 1