Metamath Proof Explorer


Theorem hashunsnggt

Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023)

Ref Expression
Assertion hashunsnggt A V B W N 0 ¬ B A N < A N + 1 < A B

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 1 rexrd N 0 N *
3 hashxrcl A V A *
4 1re 1
5 xltadd1 N * A * 1 N < A N + 𝑒 1 < A + 𝑒 1
6 4 5 mp3an3 N * A * N < A N + 𝑒 1 < A + 𝑒 1
7 2 3 6 syl2an N 0 A V N < A N + 𝑒 1 < A + 𝑒 1
8 7 ancoms A V N 0 N < A N + 𝑒 1 < A + 𝑒 1
9 rexadd N 1 N + 𝑒 1 = N + 1
10 4 9 mpan2 N N + 𝑒 1 = N + 1
11 1 10 syl N 0 N + 𝑒 1 = N + 1
12 11 adantl A V N 0 N + 𝑒 1 = N + 1
13 12 breq1d A V N 0 N + 𝑒 1 < A + 𝑒 1 N + 1 < A + 𝑒 1
14 8 13 bitrd A V N 0 N < A N + 1 < A + 𝑒 1
15 14 3adant2 A V B W N 0 N < A N + 1 < A + 𝑒 1
16 15 adantr A V B W N 0 ¬ B A N < A N + 1 < A + 𝑒 1
17 hashunsngx A V B W ¬ B A A B = A + 𝑒 1
18 17 3impia A V B W ¬ B A A B = A + 𝑒 1
19 18 eqcomd A V B W ¬ B A A + 𝑒 1 = A B
20 19 3expa A V B W ¬ B A A + 𝑒 1 = A B
21 20 3adantl3 A V B W N 0 ¬ B A A + 𝑒 1 = A B
22 21 breq2d A V B W N 0 ¬ B A N + 1 < A + 𝑒 1 N + 1 < A B
23 16 22 bitrd A V B W N 0 ¬ B A N < A N + 1 < A B