Metamath Proof Explorer


Theorem hashunsngx

Description: The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng . (Contributed by BTernaryTau, 9-Sep-2023)

Ref Expression
Assertion hashunsngx A V B W ¬ B A A B = A + 𝑒 1

Proof

Step Hyp Ref Expression
1 disjsn A B = ¬ B A
2 snfi B Fin
3 hashunx A V B Fin A B = A B = A + 𝑒 B
4 2 3 mp3an2 A V A B = A B = A + 𝑒 B
5 1 4 sylan2br A V ¬ B A A B = A + 𝑒 B
6 5 3adant2 A V B W ¬ B A A B = A + 𝑒 B
7 hashsng B W B = 1
8 7 3ad2ant2 A V B W ¬ B A B = 1
9 8 oveq2d A V B W ¬ B A A + 𝑒 B = A + 𝑒 1
10 6 9 eqtrd A V B W ¬ B A A B = A + 𝑒 1
11 10 3expia A V B W ¬ B A A B = A + 𝑒 1