Metamath Proof Explorer


Theorem hashvnfin

Description: A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion hashvnfin S V N 0 S = N S Fin

Proof

Step Hyp Ref Expression
1 eleq1a N 0 S = N S 0
2 1 adantl S V N 0 S = N S 0
3 hashclb S V S Fin S 0
4 3 bicomd S V S 0 S Fin
5 4 adantr S V N 0 S 0 S Fin
6 2 5 sylibd S V N 0 S = N S Fin