Metamath Proof Explorer


Theorem hashwrdn

Description: If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018)

Ref Expression
Assertion hashwrdn V Fin N 0 w Word V | w = N = V N

Proof

Step Hyp Ref Expression
1 wrdnval V Fin N 0 w Word V | w = N = V 0 ..^ N
2 1 fveq2d V Fin N 0 w Word V | w = N = V 0 ..^ N
3 fzofi 0 ..^ N Fin
4 hashmap V Fin 0 ..^ N Fin V 0 ..^ N = V 0 ..^ N
5 3 4 mpan2 V Fin V 0 ..^ N = V 0 ..^ N
6 hashfzo0 N 0 0 ..^ N = N
7 6 oveq2d N 0 V 0 ..^ N = V N
8 5 7 sylan9eq V Fin N 0 V 0 ..^ N = V N
9 2 8 eqtrd V Fin N 0 w Word V | w = N = V N