Metamath Proof Explorer


Theorem hashwwlksnext

Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Hypotheses wwlksnextprop.x X = N + 1 WWalksN G
wwlksnextprop.e E = Edg G
wwlksnextprop.y Y = w N WWalksN G | w 0 = P
Assertion hashwwlksnext Vtx G Fin x X | y Y x prefix M = y y 0 = P lastS y lastS x E = y Y x X | x prefix M = y y 0 = P lastS y lastS x E

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X = N + 1 WWalksN G
2 wwlksnextprop.e E = Edg G
3 wwlksnextprop.y Y = w N WWalksN G | w 0 = P
4 wwlksnfi Vtx G Fin N WWalksN G Fin
5 ssrab2 w N WWalksN G | w 0 = P N WWalksN G
6 ssfi N WWalksN G Fin w N WWalksN G | w 0 = P N WWalksN G w N WWalksN G | w 0 = P Fin
7 4 5 6 sylancl Vtx G Fin w N WWalksN G | w 0 = P Fin
8 3 7 eqeltrid Vtx G Fin Y Fin
9 wwlksnfi Vtx G Fin N + 1 WWalksN G Fin
10 1 9 eqeltrid Vtx G Fin X Fin
11 rabfi X Fin x X | x prefix M = y y 0 = P lastS y lastS x E Fin
12 10 11 syl Vtx G Fin x X | x prefix M = y y 0 = P lastS y lastS x E Fin
13 12 adantr Vtx G Fin y Y x X | x prefix M = y y 0 = P lastS y lastS x E Fin
14 1 2 3 disjxwwlkn Disj y Y x X | x prefix M = y y 0 = P lastS y lastS x E
15 14 a1i Vtx G Fin Disj y Y x X | x prefix M = y y 0 = P lastS y lastS x E
16 8 13 15 hashrabrex Vtx G Fin x X | y Y x prefix M = y y 0 = P lastS y lastS x E = y Y x X | x prefix M = y y 0 = P lastS y lastS x E