Metamath Proof Explorer


Theorem hashxnn0

Description: The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 10-Dec-2020)

Ref Expression
Assertion hashxnn0 M V M 0 *

Proof

Step Hyp Ref Expression
1 hashfxnn0 . : V 0 *
2 1 a1i M V . : V 0 *
3 elex M V M V
4 2 3 ffvelrnd M V M 0 *